
Linux Introduction

code by Kaloyan Krastev

Last update: Friday 24th May, 2024, revision: 3111

table of contents

1 introduction 3

2 definitions 4

2.1 kernel . 4

2.2 multitasking . 4

2.3 kernel modules . 6

3 linux 7

3.1 features . 8

3.1.1 free . 8

3.1.2 configurable 8

3.1.3 modular . 8

3.1.4 preemptible 9

3.2 functionality . 9

3.2.1 process scheduler 9

3.2.2 memory management 9

3.2.3 system calls 10

3.2.4 interrupts . 11

4 exercises 12

4.1 kernel releases . 12

4.2 kernel update . 12

4.3 activate kernel images 13

5 outlook 15

2

1 introduction

In this paper, Linux always designates the kernel while the correspond-

ing operating system is referred as GNU is not UNIX (GNU)/Linux.

That is why Linux should not be compared to operating systems but

their kernels like the original Unix kernel, the BSD kernel, NT, and

XNU, the last two designed by Microsoft Corporation and Apple Inc.

The definitions are required to understand the relation between the

kernel, the operating system and the user applications. These occupy

distinct parts of the memory called kernel-space and user-space. The

kernel, multitasking, preemption, symmetrical multiprocessor support

and kernel modules are defined in Section 2. Important kernel features

are covered in Section 3. Finally, limited technical details about Linux

images and kernel releases are available in Section 4.

3

2 definitions

An operating system (OS) is a software (SW) environment for run-

ning applications on computing devices. In other words, the OS pro-

vides user applications with a standard interface to system hardware

(HW) and SW resources. The main components required for the func-

tioning of OSs follow. Strictly speaking, the last two items are not

considered as integral parts of the OS. These are commonly defined

as OS users.

• bootloader => take care of the boot sequence

• kernel => manage HW and SW resources

• shell => command-line interface to interact with the OS

• services => provide functionalities to applications

• graphical server => display graphical content

• applications => perform different user tasks

2.1 kernel

The kernel[2] is a critical component of an OS responsible for low-level

resource management and communication with HW. Famous exam-

ples are NT (New Technology) kernel designed by Microsoft Corpo-

ration and XNU (X is Not Unix). The last one is an Unix-like kernel

from Apple Inc.

2.2 multitasking

Multitasking is about running processes. It is important to under-

stand that a single processor may run only one process at a time.

4

Even on multiprocessor platforms, the number of processes exceeds

the number of processors by at least two to three orders of mag-

nitude. Fortunately, most OSes are able to interleave execution of

multiple processes.

In cooperative multitasking, a process does not stop running

before it has decided itself, in example, when the task is completed. I

wonder why it is called like that because there is nothing cooperative

here. In this approach, a single process could monopolize the machine

processor time and potentially bring the entire OS down.

Fortunately, modern OSes employ another solution. In this ap-

proach, called preemptive multitasking, the kernel grants processes

tiny pieces of processor time called time-slices. Their duration is cal-

culated by dedicated algorithms. When a time-slice is over, the kernel

interrupts the corresponding process in a task called preemption, sav-

ing the entire working context in order to resume this process later,

when the next time-slice will be granted to it. With a typical time-slice

length on the order of milliseconds, the preemption gives human be-

ings the attractive illusion of many processes running simultaneously.

Unfortunately this is not the case.

Symmetrical multiprocessor (SMP) support is a common HW fea-

ture supported by the modern OSes. It allows for more efficient man-

agement and usage of multiple processors. This is achieved by con-

sidering all processors identical. In addition, they may share HW re-

sources like memory and various devices between them. The purpose

of SMP support is to ensure that multiple processors work together

in harmony to deliver improved performance.

5

2.3 kernel modules

Linux supports dynamic insertion and removal of code at runtime.

This code is grouped in loadable binary objects called modules. Mod-

ule support allows OSes to have a compact base kernel image without

missing optional features and drivers supplied via modules.

A device driver, in example, could be compiled as a part of the

kernel or separately - as a kernel module. This depends on the kernel

build configuration. As a part of the kernel, the driver is loaded on

boot and unloaded on shut down. As a module it could be loaded or

unloaded anytime the system may need so. The last solution decreases

kernel size and Linux boot time but may potentially decrease OS

performance.

6

3 linux

The initial version of Unix was created in Bell Labs in 1969. The

design principles like hierarchical file system, command-line interface

and multi-user support have been followed in many modern OSes.

However, it was a commercial product with a proprietary development

model and practically no development community.

Linux is an OS kernel that was originally developed by Linus Tor-

valds twenty years later in 1991. In short, it is an Unix-like kernel,

but it has a source code freely available to the public. Linux is used

as a kernel in multiple OSes, commonly referred to as GNU/Linux

distributions.

There are two families of OS kernels - monolithic and micro-

kernels. Micro-kernels run as multiple processes usually called servers.

As a monolithic kernel, Linux is designed to run as a single piece of

SW in a special part of the memory called kernel-space.

In contrast, applications run a virtual environment, provided by

Linux, called user-space. The kernel makes each application feel like

it has all available resources while, in fact, it shares with the other

applications and it has exactly as memory and processor time as Linux

has granted. This control makes the main difference with older Unix

kernels.

If Linux differs from classic Unix systems, the reason is that Linus

Torvalds and his community behind the kernel were willing and able

to chose the best solution for any problem. In addition, they have

invented new approaches when they were not happy with existing.

Readers may find the most important characteristics of the kernel in

the following subsection.

7

3.1 features

These are four characteristics of the kernel that make it unique.

3.1.1 free

Linux is free in all respects by design. Developers implement only

features that solve real problems, have a clean design and a simple

implementation. In contrast, everybody with a good idea may con-

tribute the open development model.

3.1.2 configurable

Linux is highly configurable. With a proper configuration, the kernel

is built and run on desktops, servers, mobile and embedded devices,

super-computers and robots. In 2021, there were over two billion

devices running Linux. That includes a large number of smartphones

running Android, which uses a Linux kernel, and hundreds of millions

of set-top boxes, smart TVs, and Wi-Fi routers, not to mention a very

diverse range of devices such as vehicle diagnostics, weighing scales,

industrial devices, and medical monitoring units that ship in smaller

volumes[4].

3.1.3 modular

Although monolithic, Linux supports dynamic loading and unloading

of kernel code on demand. Such code is organized in kernel mod-

ules. They are stored in /lib/modules/< kernel version >/kernel.

Use lsmod to list active kernel modules. Alternatively dump the file

named /proc/modules. To get more information of a module use

modinfo and if you ever need to load or unload a kernel module,

read the documentation of the modprobe command-line tool.

8

3.1.4 preemptible

To be precise, the multitasking algorithm depends on the kernel build

configuration. Linux could have a voluntary preemption or no pre-

emption at all. In addition, it could be compiled as a preemptible as

well as a fully preemptible kernel. The last option is useful in real-

time environments. Commercial Unix OSes like Solaris and IRIX also

have preemptive kernels.

3.2 functionality

Linux manages HW resources, provides essential services and enables

communication between SW applications and the HW. The following

key functions define the purpose of the kernel.

3.2.1 process scheduler

Processes executing in user-space may be running or waiting for a

time-slice to run. In both cases their process state is TASK_RUNNING.

The process scheduler decides which process to run, when, and for how

long. It divides the processor time between the runnable processes.

Usually these are more that available processors and while some pro-

cesses are running the others are waiting to run. The scheduler takes

the fundamental decision which process to run next. Completely Fair

Scheduler (CFS) is implemented in Linux as a main process scheduler

since 2007. To learn more, read about the CFS scheduling algorithm.

3.2.2 memory management

The memory granted to user-space processes by the kernel has a vir-

tual allocation. This way applications work like they have all avail-

able memory. In fact, they share RAM with many other processes

9

and have a restricted access. The MMU (memory management unit)

is the HW that manages memory and performs virtual to physical

address translation.

3.2.3 system calls

Provide an abstracted HW interface for user-space processes. System

calls enable interaction with the kernel. This way applications may

request OS resources and services. These are granted by the kernel

in a defined and controlled manner. Usually programs wait for the

result of a system call to continue execution. Figure 1 is a diagram of

one user application read system call to the kernel.

Each system call type is assigned a standard number that cannot

be modified. Otherwise code written before the modification may not

work. System call numbers are defined in the following file.

/usr/include/asm/unistd_64.h

It belongs to the package linux−api−headers required by glibc.

This is a c header with a complete list of three hundred sixty-two

system calls.

Figure 1: a system call[2]

10

3.2.4 interrupts

Allow HW devices and SW processes to temporarily suspend the cur-

rent processor execution and transfer control to a specific routine

called interrupt handler. Interrupts are asynchronous and may occur

any time. They handle HW events that require immediate attention

like keyboards, mice, network and storage devices. When an inter-

rupt is requested, the processor saves the interrupted process context

in order to resume it after the interrupt handler has completed its

tasks.

11

4 exercises

When compiled, Linux is a single binary file, very often called image.

It is loaded on boot into a supervisor mode called kernel-space. This

space provides unrestricted access to the HW. The image has a size

of around 13 MB. In comparison, the source code, written in c, takes

around 1.5 GB on a storage device. These are mainly HW drivers for

different devices and source code for various processor architectures.

4.1 kernel releases

Linux versions contain three numbers divided by dots. The first num-

ber is the major version, followed by the minor one and the last cor-

respond tiny improvements like bug fixes and security updates. In

example mine is 6.4.12. There is not any specific interval between

two releases. Various considerations may cause releases of new ver-

sions, but I do not want to discuss this topic here.

Some GNU/Linux distributions suggest automatically kernel up-

dates, some not. In example, openSUSE do that after each stable

release. In contrast, on Manjaro Linux[1], you are expected to update

the kernel yourself.

4.2 kernel update

There is a dedicated graphical interface on Manjaro[3]. Look for the

Kernel section of systemsettings. Here one may install/uninstall

kernel releases of her/his choice, if (s)he has root privileges. Usually, in

addition to the active Linux kernel, one or two older versions are kept

on the boot partition, where the bootloader has access during the boot

sequence. This allows to switch back to an older version, if the new

kernel fails to load. To be honest, after more than twenty years work

12

on various GNU/Linux distributions, this has never happened to me.

You may think that I am just lucky but, in fact, before being released,

a new kernel is tested and verified with multiple build configurations

by many different users on various process architectures. Find avail-

able kernel images on your system in /boot/vmlinuz-[x.y]-[arch],

where x is the major, y is the minor kernel version and arch is the

processor architecture.

4.3 activate kernel images

Linux releases with long − term support (LTS) are recommended.

Avoid kernels that are not supported by the system. By default, the

location of the last kernel image loaded on boot is saved and next time

it is loaded automatically. Learn next how to modify this behaviour

in the bootloader configuration, in this case - GRUB (GRand Unified

Bootloader).

This is how to activate a different kernel release. This should load

a specific kernel image during next boot. Logically, one may chose

one of the images already installed on the boot partition.

• to list GRUB entries, including installed kernel releases, use the

following command

sudo grep 'menuentry ' /boot/grub/grub.cfg | cut -f 2 -d "'" |

nl -v 0

In this list, one positive integer number corresponds each image.

Remember the number of the kernel to activate.

• comment the directive GRUB_SAVEDEFAULT in /etc/default/

grub

• run sudo grub-reboot followed by the number in question

13

On next reboot the corresponding kernel should be loaded.

Readers may have noticed that all commands are executed with

root privileges. This is not by chance. According to my experience, if

the bootloader has a wrong configuration, the probability of a crash

during boot sequence is quite high. Always verify changes in advance

and be prepared to revert changes if a failure occurs.

14

5 outlook

The article covers important Linux features and functions as well as

definitions needed to understand them. In addition, readers may learn

how to install new kernel releases and how to activate a particular

kernel image.

15

acronyms

GNU GNU is not UNIX

HW hardware

LTS long − term support

OS operating system

SW software

16

bibliography

[1] Vitor Lopes. Manjaro. 2023.

url: https://manjaro.org (visited on 2023).

[2] Robert Love. Linux Kernel Development. Addison-Wesley, 2010.

[3] Atanas Georgiev Rusev. Manjaro Linux User Guide.

Packt Publishing Limited, 2023.

[4] Frank Vasquez and Chris Simmonds.

Mastering Embedded Linux Programming.

Packt Publishing Limited, 2021.

generate html powered by LATEX

17

https://manjaro.org
kernel.html
https://www.latex-project.org

