
An Embedded Operating System with a

Graphical System Performance Monitor

on Raspberry π

code by Kaloyan Krastev

Last update: Friday 24th May, 2024, revision: 3111

table of contents

1 introduction 3

2 metadata 4

2.1 structure . 4

2.1.1 recipes . 4

2.1.2 targets . 4

2.1.3 layers . 4

2.2 meta-thc . 5

2.3 automation . 6

3 configuration 10

3.1 directives . 10

3.2 classes . 13

4 build 14

4.1 requirements . 14

4.2 environment . 15

4.3 flow . 16

5 install 17

6 run 19

7 outlook 22

2

1 introduction

These interactive instructions[6] follow the configuration and build

of a Linux-based operating system (OS) for Raspberry π[9]. The

goal of the project is a compact and deterministic OS with a run-

ning graphical user interface (GUI) system performance monitor

application[7]. Standard command-line interface (CLI) tools ensure

device remote access and control. The build is done with Yocto[11].

There are several steps organized in corresponding sections as fol-

lows. Read in Section 2 how to fetch metadata. Section 3 shows how

to configure the OS build. In Section 4 learn how to build the OS

image and see how to copy image to SD card in Section 5. Section

6 is dedicated to post-install issues like the configuration of the WiFi

interface from the command line.

3

2 metadata

In current context, metadata is a set of instructions to build targets.

The build configuration is managed via files with extension conf.

They define configuration variables to control the build process.

2.1 structure

Basic concepts needed to understand metadata structure follow.

2.1.1 recipes

The instructions are organized as recipes in files with the bb extension.

There are also files with the bbappend extension designed to modify

recipes and bitbake classes with the suffix bbclass for instructions

shared between recipes. See a full list of metadata file types in Table

2.

2.1.2 targets

The target may be a software (SW) package or group of packages.

The target may also be a complete OS image.

2.1.3 layers

Metadata is organized in layers. Layers logically separate informa-

tion of a project. Table 1 presents OpenEmbedded[3] metadata layer

types.

The complete list of github SW metadata repositories used in

this project includes Yocto layers, the Raspberry π board support

package (BSP) layer, a SW layer with custom recipes including target

and distribution definitions, and the build configuration itself.

4

layer type contents

base base metadata for the build

machine aka BSP hardware (HW) support

distribution policy configuration

SW additional SW

miscellaneous do not fall in upper categories

Table 1: metadata layer types as defined by OpenEmbedded[3]

file type extension purpose

recipe bb SW build instructions

recipe bbappend SW recipe modification

class bbclass shared instructions

config conf build directives

config inc shared build directives

Table 2: metadata file types

In short, users fetch metadata in contrast to the real data fetched

later during the OS build. See Section 4 for details. It means that

users decide where to store fetched metadata. It is nice to have all

layer sub-directories in one system location. In these instructions it

is referred as <META-DIR>. The second directory to create is the

<BUILD-DIR>. This is where the build and the build configuration

live. I suggest that <BUILD-DIR> is not inside <META-DIR> to

not mix data and metadata.

2.2 meta-thc

Following the OpenEmbedded metadata classification, meta-thc is a

SW layer as there are SW recipes. On the other hand, it is a dis-

tribution layer because it defines a new distribution based on poky.

5

See <META-DIR>/thc/meta-thc/conf/distro/thc.conf. In ad-

dition, there is an image recipe to build a target in <META-DIR>/thc/

meta-thc/recipes-core/images/core-image-thc.bb.

This allows for an effective isolation of machine, distribution and

image features of the OS. The layer includes also shell scripts to clone

metadata and to export the OS image on SD-card. These may be

found in <META-DIR>/thc/meta-thc/bin. Learn more in follow-

ing sections. See next the contents of meta-thc. The system location

of the layer is <META-DIR>/thc/meta-thc by default.
.
b in
metafetch . sh

c l a s s e s
t h c l a s s . bbc l a s s

conf
l a y e r . conf

README
README.md
r e c i p e s−core
dhcpcd
dhcpcd_9 . 4 . 1 . bbappend

in i t −ifupdown
in i t −ifupdown_1 . 0 . bbappend

thcp
thcp
imgui . i n i
rp ip
w i f i n i . sh

thcp_0 . 1 . bb
r e c i p e s−sw

g l fw
glfw_3 . 3 . 8 . bb

imgui
imgui_0 . 1 . bb

2.3 automation

There is a shell script to clone all metadata from public github repos-

itories. It may serve people to build their own OS for Raspberry π.

The script performs metadata fetch, the bitbake initialisation and a

simple metadata verification.
#!/ bin/ sh
name : metafetch
purpose : c l one r p i metadata

6

code : kaloyansen@gmail . com

FETCHER=https : // g ithub . com/
GITFETCHER=git@github . com :
BRANCH=k i r k s t on e

LONGSFX=$ (head −c 1000 /dev/random | t r −dc ’ a−z ’)
SFX=$ (expr " $LONGSFX" : " .∗ \ (. \ { 3 \ } \)")
unset LONGSFX

DEFMETADIR=$HOME/yocto/$SFX/metadata
DEFBUILDIR=$HOME/yocto/$SFX/ rp i4

TARGET=core−image−thc

XNAME=$(basename $0)

say () { p r i n t f " : : $XNAME : : $∗\n" ; }
d i e () { say $∗ && ex i t 0 | | k i l l $$; }
use () { # pr in t opt i ons and qu i t

p r i n t f "
usage :
\ t $XNAME <options >

opt ion \ t purpose \ t d e f a u l t
−h \ t pr in t t h i s \ t usage
−d \ t dry run \ t wet run
−g \ t switch to g i t p ro to co l \ t https pro to co l
−r <branch> \ t branch \ t $BRANCH
−m <metadir> \ t metadata d i r e c t o r y \ t $DEFMETADIR
−b <bu i l d i r > \ t bu i ld d i r e c t o r y \ t $DEFBUILDIR

"
d i e

}

conf irm () { # get con f i rmat i on or qu i t

read −p " p l e a s e conf irm (y/n) " cho ix
[" $choix " == "y"] && say conf irmed | | d i e

}

["$SFX"] | | d i e try again

whi l e g e topt s " :m: b : r : hgd" opt ion ; do # parce command−l i n e opt i ons

case $opt ion in

m) METADIR=$OPTARG; ;
b) BUILDIR=$OPTARG; ;
r) BRANCH=$OPTARG; ;
g) FETCHER=$GITFETCHER ; ;
d) DRYRUN=yes ; ;
h) use ; ;
∗) use ; ;

e sac
done

check system path
["$METADIR"] | | METADIR=$DEFMETADIR

7

["$BUILDIR"] | | BUILDIR=$DEFBUILDIR
[−d $METADIR] | | mkdir −p $METADIR | | d i e $? cannot c r e a t e $METADIR
[−d $BUILDIR] | | mkdir −p $BUILDIR | | d i e $? cannot c r e a t e $BUILDIR
METADIR=$ (r ea lpa th $METADIR) && say "metadata : \ t $METADIR" | | d i e $? cannot f i nd

$METADIR
BUILDIR=$ (r ea lpa th $BUILDIR) && say " bu i ld : \ t $BUILDIR" | | d i e $? cannot f i nd

$BUILDIR
say "branch : \ t $BRANCH"
say " pro to co l : \ t $FETCHER"

de c l a r e −A REPO
REPO=(# a s s o c i a t i v e g i t r e po s i t o r y ar ray

[y o c t op r o j e c t/poky . g i t]=$METADIR/poky
[openembedded/meta−openembedded . g i t]=$METADIR/oe
[agherzan /meta−r a spbe r ryp i]=$METADIR/ rp i /meta−r a spbe r ryp i
[ka loyansen /meta−thc . g i t]=$METADIR/ thc/meta−thc
[ka loyansen / r p i c on f . g i t]=$BUILDIR/ conf

)

["$DRYRUN"] | | conf irm

f o r repo in $ { !REPO[@] } ; do # c lone r e p o s i t o r i e s

command=" g i t c l one −b $BRANCH $FETCHER$repo ${REPO[$repo] } "
say $command
["$DRYRUN"] | | $command

done

["$DRYRUN"] && die

ad jus t bibtbake l a y e r c on f i g u r a t i o n
sed − i s#/home/ yocto/ l a y e r#$METADIR#g $BUILDIR/ conf / bb laye r s . conf | | d i e sed $?

bitbake environment i n i t i a l i s a t i o n
OEINIT=oe−i n i t −bui ld−env
cd $METADIR/poky && pwd | | d i e $? cannot f i nd $METADIR/poky
[−f $OEINIT] && . . / $OEINIT $BUILDIR | | d i e $? cannot f i nd $OEINIT

bitbake−l a y e r s show−l a y e r s

echo && say "how to s t a r t a new bu i ld "
p r i n t f "
cd $METADIR/poky
. . / $OEINIT $BUILDIR
bitbake $TARGET

"

Do not copy/paste metafetch. Download it here. Note the as-

sociative array REPO. It defines the remote and local system path

of repositories. The script is designed in a way that after a success-

ful run one may start a build with bitbake. Do not forget to grant

permissions to make script executable. It takes <META-DIR> and

<BUILD-DIR> names from the command-line. You may use next ex-

8

https://github.com/kaloyansen/meta-thc/blob/kirkstone/bin/metafetch

amples to run metafetch. Running the script without command-line

options like the first example results in some default configuration.

You may want to specify custom directories like the second example.

Otherwise the script will use default values. The default github pro-

tocol is https but I recommend using secure shell (SSH) because it

is an order of magnitude faster. You may need to export one SSH

public key to your github account. Use the command-line option -g

to switch protocol. The default git branch is kirkstone. Use -h to

see all CLI options.
chmod +x metafetch

. / metafetch

. / metafetch −m <META−DIR> −b <BUILD−DIR>

./ metafetch −g

9

3 configuration

Build configuration is in <BUILD-DIR>/conf, check files local.

conf and bblayers.conf. Yocto layers are specified in bblayers.

conf. The build directives are in local.conf. Variables in this file

control the build. Sometimes I call these directives to avoid repe-

titions. To not mix them, I have isolated target HW specific di-

rectives. Two possible targets are defined in <BUILD-DIR>/conf/

raspberrypi4-64.inc and <BUILD-DIR>/conf/qemuarm64.inc.

The host configuration is optional. See the bottom lines in <BUILD-

DIR>/conf/local.conf for details. Note the difference between the

optional include and not optional require. The latter will interrupt

the build configuration if the corresponding file does not exist.

3.1 directives

Directives control the build. It is not always easy to understand their

meaning and their relations. For example, some directives change

values of other directives. What is more, bitbake syntax is pretty

complicated. In result, your life may become unbearable if the build

configuration is too long. See next an alphabetical list of some im-

portant build configuration directives.

• BB_DISKMON_DIRS This bitbake variable enables free stor-

age space verification. Users may add rules to monitor as many

directories as they wish. Of course, it makes sense to add only

directories on different storage partitions. The directive con-

tains rules to trigger actions in case of low storage space during

builds. Possible actions are WARN, STOPTASKS and HALT. Rules

are defined in the following format.
"<act ion >,<d i r e c t o r y path>,<space l e f t >,<inodes l e f t >"

10

• DISTRO This is the short name of the OS distribution. Yocto

provides four variants of their reference distribution poky. See

details in <META-DIR>/poky/meta-poky/conf/distro/poky*.

conf. Some distribution dependent directive values are pre-

sented in Table 3.

• DISTRO_FEATURES Distributions can select which features

they want to support through the DISTRO_FEATURES vari-

able, which is set in the distribution configuration file.

• IMAGE_FEATURES This directive controls the contents of the

OS image. Different predefined packages could be added, re-

moved or modified via this variable. Useful examples for im-

age features are allow-empty-password, allow-root-login,

empty-root-password, post-install-logging, splash, package-management

and ssh-server-dropbear.

• IMAGE_FSTYPES This is another important directive. Here

I have removed archived images to decrease the built time and

added the wic format. One may want to use the wic command-

line tool to list the partitions on a wic image. See how to copy

it to an SD card in Section 5.

• IMAGE_OVERHEAD_FACTOR This defines the free storage

space on the root partition. Overhead factor of 2 means that

the free space will be equal to the space already used by the OS.

This will double the size of the image. The default value of 1.3

increases image size with 30%.

• INHERIT This is a list of included bitbake classes. See Section

3.2.

11

• INIT_MANAGER The OS init process could be sysvinit,

systemd or mdev-busybox.

• MACHINE No doubt, this is the most important directive, set

here to raspberrypi4-64. You may want to change this value

if you build an OS for a different HW. If you want to emulate

Raspberry π on your host machine with qemu, set MACHINE to

qemuarm64. I confirm that this works although I did not find

this approach very useful to test a GUI.

• MACHINE_FEATURES This directive controls machine fea-

tures. It is set in the machine configuration file and specifies the

hardware features for a given machine.

• PACKAGE_CLASSES There are different package formats used

in various Linux-based OS’s to distribute and manage programs.

Both debian package format - deb and rpm from RedHat do well,

but recently I had issues with ipk so I disabled it.

• PACKAGE_INSTALL This is where to specify additional SW

packages. This is useful for packages not included in the image

by default. In my experience, the default OS has all necessary

programs or compact alternatives. However this is the directive

used to append imgui.

• SANITY_TESTED_DISTROS This is a list of tested GNU is

not UNIX (GNU)/Linux distributions. Using another distri-

bution is not prohibited, but a warning messages is generated

each time bitbake is run. One may want to append the host

machine Linux distribution to get rid of this warning. See next

examples for users of Manjaro and OpenSuse rolling releases.
SANITY_TESTED_DISTROS: append = " manjaro"
SANITY_TESTED_DISTROS: append = " tumbleweed −∗"

12

config file INIT_MANAGER TCLIBC status

poky.conf sysvinit glibc fine

poky-bleeding.conf sysvinit glibc unknown

poky-altcfg.conf systemd glibc unknown

poky-tiny.conf mdev-busybox musl unknown

Table 3: reference distribution configurations

• TCLIBC The GNU standard C library variant to use during the

build. Available options are glibc, musl, newlib and baremetal.

3.2 classes

Find bitbake classes in <META-DIR>/poky/meta/classes. For

example rm_work.bbclass defines a specific task for packages to re-

move intermediate files generated during the build. This decreases

storage space about twice. Those who want to keep the working

data and have enough storage space may comment the next line in

local.conf.

Another class, extrausers.bbclass, is used with the directive

EXTRA_USERS_PARAMS to manage OS users and passwords. In exam-

ple, it may be useful to define a superuser password.
INHERIT : append = " rm_work"

13

4 build

It is very likely that you will need to install Yocto requirements[12]

to be able to run bitbake. The list of Yocto sanity checked distribu-

tions currently includes poky-3.3, poky-3.4, Ubuntu-18.04, Ubuntu-

20.04, Ubuntu-22.04, Fedora-37, Debian-11, OpenSUSEleap-15.3 and

AlmaLinux-8.8. However, I do builds on Manjaro - a not officially

supported GNU/Linux distribution - and it works fine.

4.1 requirements

Ensure that the following packages are installed.

• git

• tar

• python

• gcc

• GNU make

Find more details in Yocto documentation at [12]. You may need

to install in addition diffstat, unzip, texinfo, chrpath, wget,

xterm, sdl, rpcsvc-proto, socat, cpio, lz4, gawk, findutils,

crypt, mtools and inetutils. As a double check, make sure to have

the following command-line tools on your host machine: chrpath,

diffstat, lz4c, rpcgen, bash, bzip2, file, grep, patch, sed and

mdir.

The complete list of packages to install on Manjaro includes git,

tar, python, gcc, make, chrpath, cpio, diffstat, patch, rpcsvc-proto.

14

Fetched metadata requires only 412MB of free space. In contrast

the OS build may need up to 30GB or even 50GB if intermediate files

are kept. Read about the bitbake class rm_work in Section 3.

4.2 environment

The primary build tool of OpenEmbedded based projects, such as

Yocto is bitbake. To initialise bitbake build environment navigate

to <META-DIR>/poky and source the initialization script like the

next command.
source oe−i n i t −bui ld−env <BUILD−DIR>

The script changes the system path to <BUILD-DIR>. Next, you

may want to run the following command to check project layers.
bitbake−l a y e r s show−l a y e r s

Alternatively, source the dedicated portable operating system

interface (POSIX) script <META-DIR>/thc/meta-thc/bin/yoctoinit.

First of all, uncomment the two lines in the script to define the system

path to <META-DIR> and <BUILD-DIR>. In addition to the envi-

ronment initialisation, the script defines some useful functions. Have

a look at the code for details.

The target core-image-thc is a compact OS image with a X server

and a running GUI system performance monitor[7] based on [2]. Run

next command to build the OS.
bitbake core−image−thc

Unless your host machine is a supercomputer, this will take at least

two hours. Find a list of tasks performed by bitbake for a typical

SW package in Table 4. If a build is interrupted during a fetch task,

this could be the connection with a server. A simple rerun of bitbake

may solve this issue. If not, you may try rebuild the target responsible

for the failure. See next how to do this.

15

task description

do_fetch fetch the source code

do_unpack unpack the source code

do_patch apply patches to the source

do_configure source configuration

do_compile compile the source code

do_install copy files to the holding area

do_populate_sysroot copy files to the staging area

do_package analyse holding area

do_package_qa check quality

do_package_write_rpm deploy SW package in rpm format

do_package_qa quality checks on the package

Table 4: bitbake tasks

bitbake <target> −c c l ean && bitbake <target>

4.3 flow

The build happens in <BUILD-DIR>. Table 5 presents a list of

important <BUILD-DIR> sub-directories.

Source archives are saved in the download directory. They are

extracted, configured, compiled and installed in the work directory.

Built packages are stored in the package directory. Finally, following

the build configuration packages are unpacked to create the OS image

found in the image directory. The build flow is summarised in Table

5.

16

name location description

configuration conf build configuration files

download downloads fetched SW source code archives

work tmp/work working directory

package tmp/deploy/rpm final SW packages in rpm format

image tmp/deploy/images boot files, kernels and images

Table 5: bitbake workflow

5 install

The OS includes a kernel ARM , 64 bit boot executable image of

23MB, a Raspberry π configuration of Linux 5.15. This is a long −

term support (LTS) kernel release. The total size of kernel modules

is 21MB.

Yocto provides multiple package and image formats. Different

ways exist to install images on SD-card. The OS has two partitions -

/root and /boot. There are no swap and home partitions.

I recommend the classic command-line tool dd to copy data. It

works fine with different image formats like rpi-sdimg, hddimg and

wic. The last one is recommended. Find the SD-card device name,

for example /dev/<xxx>, unmount it with umount if mounted, and

do copy data with the next command.
dd i f=core−image−thc−ra spber ryp i4 −64.wic o f=/dev/<xxx> s ta tu s=prog r e s s

• note 1: run this command in <BUILD-DIR>/tmp/deploy/

images/raspberrypi4-64

• note 2: run this command with root privileges

• note 3: be careful to not specify the device name of your hard

drive (see note 2)

17

Alternatively, there is a dedicated POSIX shell script - <META-

DIR>/thc/meta-thc/bin/burn. Use the command-line option -h

for details. The transfer does not take long. When it is over, replace

the card to Raspberry π and turn it on. That’s it.

18

6 run

Wireless connection is established via classic command-line tools like

ip[1] and iw. The dynamic host configuration protocol (DHCP)

client is udhcpc[1], and wpa_passphrase[10] stores WiFi connections.

A dedicated POSIX shell script named wifini.sh is installed in

/usr/bin, as well as a running GUI system performance monitor[7].

The application uses Dear ImGui[2] library and is configured to start

automatically on boot.
#!/ bin/ sh
name : w i f i n i . sh
purpose : w i f i connect ion
code : ka loyansen at gmail dot com
requ i r e : wpa_passphrase , wpa_supplicant , ip , iw , grep , awk
#

f i l e s
MYNAME=‘basename $0 ‘
WPACONF=/etc /wpa_supplicant . conf
IFCONF=/etc /network/ i n t e r f a c e s

command−l i n e t o o l s
WPAPASS=/usr / bin/wpa_passphrase
IW=/usr / sb in / iw
WPASUPP=/usr / sb in /wpa_supplicant
DHCP=/sbin /udhcpc
IP=/sbin / ip

d i e () { echo $MYNAME $∗ && ex i t 0 ; }
say () { echo $MYNAME $ ∗ ; }
auto () { # enable w i f i connect ion on boot

patch=auto\ $WIFACE
say $patch
grep " $patch" $1 > /dev/ nu l l | | p r i n t f "

$patch
wpa−roam $WPACONF

" >> $1 ;
}

["$USER" == " root "] | | d i e run with root p r i v i l e g e s

get w i f i i n t e r f a c e and network s s i d
IWD=‘$IW dev ‘
WIFACE=‘echo $IWD | grep I n t e r f a c e | awk ’ { pr in t $3} ’ ‘
SSID=‘getopt s : $∗ | awk ’ { pr in t $2} ’ ‘

say whoami : $0

[$SSID] && say network : $SSID | | d i e s p e c i f y network : $MYNAME −s SSID
[$WIFACE] && say i n t e r f a c e : $WIFACE | | d i e w i r e l e s s i n t e r f a c e not found

19

ve r i f y connexion
echo $IWD | grep $SSID > /dev/ nu l l && die $SSID connected | | say connect ing $SSID

up i n t e r f a c e
$IP l i n k show $WIFACE | grep UP > /dev/ nu l l | | $IP l i n k s e t $WIFACE up

search network
$IW $WIFACE scan | grep $SSID > /dev/ nu l l | | d i e cannot f i nd $SSID

FINE=‘grep $SSID $WPACONF‘

die debug $FINE

1 . save network in $WPACONF
[$FINE] && say $SSID a lready con f i gur ed | | $WPAPASS $SSID >> $WPACONF

2 . c on f i g u r e w i f i to s t a r t on boot in $IFCONF
[−f $IFCONF] && auto $IFCONF | | d i e $IFCONF not found

3 . reboot
say reboot in s i x seconds && s l e ep 3
say reboot in thr e e seconds && s l e ep 2
say reboot in one second && s l e ep 1
yeah no k idding
reboot & d i e s e e you l a t e r | | k i l l $$

con t r o l f i l e s
WPASOCKET=/run/wpa_supplicant /$WIFACE

proce s s id f i l e s
WPAPID=/run/wpa_supplicant .$WIFACE. pid
DHCPID=/run/udhcpc .$WIFACE. pid

r e c r e a t e wpa socke t
rm $WPASOCKET
$WPASUPP −B −D wext − i $WIFACE −c $WPACONF | | say cannot c r e a t e $WPASOCKET

s t a r t a dhcp c l i e n t
$DHCP − i $WIFACE | | d i e $?

$IP addr show $WIFACE
$IW $WIFACE l i n k
$IP route show

Do not copy/paste the script. It may be downloaded here but it

is already installed on the target OS. Specify network id from the

command line with a short command-line option -s. See next example

usage.
w i f i n i . sh −s <SSID>

The script asks for the network password to store it encrypted

for future connections. Once an internet protocol (IP) address is as-

signed to Raspberry π network device, the SSH server by Dropbear[5]

20

https://github.com/kaloyansen/meta-thc/blob/kirkstone/recipes-core/thcp/thcp/wifini.sh

allows for secure remote login, control and file transfer.

A client is needed to transmit mails to some simple mail transfer

protocol (SMTP) server. Here this functionality is powered by a com-

pact SMTP client called msmtp[8]. To configure user email account

edit <META-DIR>/thc/meta-thc/recipes-extended/msmtp/msmtp/

.msmtp.conf on the host machine or ~/.msmtp.conf on the target

machine. In both cases the msmtp configuration is performed on the

target machine. Use the following command to run configuration func-

tions, including generation of a security key, encryption of your pass-

word and the client configuration. Privacy is assured and security

protected by GnuPG[4].
con f i gur e_mai l_c l i ent

21

7 outlook

This reports the progress in the development of a custom Linux-based

OS for Raspberry π[9]. The kernel version of this embedded OS is

Linux release 5.15. A GUI system performance monitor application[7]

is built as a part of the OS image. In addition, an SSH server provides

remote connection, data transfer and device control.

As the OS is now functional, performance and real-time tests are

ongoing. For precision measurements the OS has to be tested both

on the target platform and on virtual HW via emulators, e.g. quick

emulator (QEMU) <META-DIR>/poky/scripts/runqemu.

22

acronyms

BSP board support package

CLI command-line interface

DHCP dynamic host configuration protocol

GNU GNU is not UNIX

GUI graphical user interface

HW hardware

IP internet protocol

LTS long − term support

OS operating system

POSIX portable operating system interface

QEMU quick emulator

SMTP simple mail transfer protocol

SSH secure shell

SW software

23

bibliography

[1] Erik Andersen. BusyBox. 2023.

url: https://busybox.net (visited on 2023).

[2] Omar Cornut. Dear ImGui. 2023.

url: https://github.com/ocornut/imgui (visited on 2023).

[3] Open Enbedded. OpenEmbedded. 2017.

url: https://www.openembedded.org (visited on 2023).

[4] GNU. GnuPG. 2024.

url: https://www.gnupg.org (visited on 2024).

[5] Matt Johnston. Dropbear SSH. 2023.

url: https://matt.ucc.asn.au/dropbear/dropbear.html

(visited on 2023).

[6] Kaloyan Krastev. An Embedded Operating System with a

Graphical System Performance Monitor on Raspberry π.

2023. url:

https://kaloyanski.github.io/meta-thc/thchowto.html

(visited on 2023).

[7] Kaloyan Krastev.

A Compact Graphical System Performance Monitor. 2024.

url: https://kaloyansen.github.io/imgui (visited on

2024).

[8] Martin Lambers. msmtp. 2024.

url: https://marlam.de/msmtp (visited on 2023).

[9] Raspberry π Ltd. Raspberi π. 2023.

url: https://www.raspberrypi.com (visited on 2023).

[10] Jouni Malinen. WPA Supplicant. 2013.

url: https://w1.fi/wpa_supplicant (visited on 2023).

https://busybox.net
https://github.com/ocornut/imgui
https://www.openembedded.org
https://www.gnupg.org
https://matt.ucc.asn.au/dropbear/dropbear.html
https://kaloyanski.github.io/meta-thc/thchowto.html
https://kaloyansen.github.io/imgui
https://marlam.de/msmtp
https://www.raspberrypi.com
https://w1.fi/wpa_supplicant

[11] Yocto Project. Yocto Project. 2023.

url: https://www.yoctoproject.org (visited on 2023).

[12] Yocto Project. Yocto Project Quick Build. 2023. url:

https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html#compatible-

(visited on 2023).

generate html powered by LATEX

https://www.yoctoproject.org
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html#compatible-linux-distribution
thchowto.html
https://www.latex-project.org

Figure 1: Raspberry π - 4 - model B behind a Kuman Capacitive 7”

touchscreen TFT LCD module

26

